

Journal of Photochemistry and Photobiology A: Chemistry 148 (2002) 65-69

www.elsevier.com/locate/jphotochem

Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO₄ (M = Mn, Fe, Co, Ni and Cu) photocatalysts^{$\frac{1}{3}$}

Zhigang Zou^a, Jinhua Ye^b, Kazuhiro Sayama^a, Hironori Arakawa^{a,*}

^a Photoreaction Control Research Center (PCRC), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

^b Materials Engineering Laboratory (MEL), National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Received 24 July 2001; received in revised form 9 October 2001; accepted 9 October 2001

Abstract

 $In_{0.8}M_{0.2}TaO_4$ (M = Mn, Fe, Co, Ni, Cu) photocatalysts crystallize in the same crystal structure: wolframite type, monoclinic crystal structure with space group P2/c. The rate of H₂ evolution from an aqueous methanol solution under UV irradiation significantly changed with the variation of doping atoms, and $In_{0.8}Ni_{0.2}TaO_4$ showed the highest activity. Under visible light irradiation ($\lambda > 420$ nm), H₂ and O₂ were evolved from an aqueous methanol and silver nitrate solution, respectively, using the photocatalysts, $In_{0.8}M_{0.2}TaO_4$ (M = Mn, Fe, Co, Ni, and Cu). © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Photocatalysts; Decomposition of water; Visible light irradiation

1. Introduction

Since photo-induced decomposition of water on TiO₂ electrodes was discovered [1], semiconductor-based photocatalysis has attracted extensive interest. Most of the investigations have focused on TiO₂, which shows relatively high activity and chemical stability under UV light irradiation. Therefore, there is an urgent need to develop new types of photocatalysts that can yield high activity under visible light irradiation, because the attempt is aimed at producing hydrogen of clean-energy from water utilizing solar energy [2–4]. Extensive studies have been performed to develop photocatalysts which can split water [5,6]. Yoshimura et al. [7] found that RbPb₂Nb₃O₁₀ of modified perovskite type had photocatalytic behavior and H₂ was evolved from an aqueous methanol solution under visible light irradiation. Inoue et al. [8] found that the oxide with tunnel structure had much more active than the generally used TiO2 or SrTiO3 for photocatalytic water splitting. Following after, Kudo et al. [9-11] showed that $In_2O_3(ZnO)_m$ and BiVO₄ could produce H₂ or O₂ from methanol or silver solutions under visible light irradiation.

Very recently, we found that InTaO₄ could evolve H₂ from pure water under visible light irradiation, but activity is very low [12]. InTaO₄ belongs to the family of the ABO₄ compounds with the $A^{3+}B^{5+}O_4$ wolframite structure. There are two kinds of octahedron in a unit cell, TaO₆ and InO₆. The TaO₆ and InO₆ octahedrons form the layers by sharing the corner. Oxygen planes are formed in parallel with (001)plane. We considered that M (M = Mn, Fe, Co, Ni, and Cu) doping of A^{3+} site in $A^{3+}B^{5+}O_4$ might cause a slight modification of crystal structure, resulting in a change in photocatalytic property. It is known that a slight modification of structure to semiconductor has a dramatic effect on the physical properties [13]. Here we report the synthesis, photocatalytic and structural characterizations of these new photocatalysts, $In_{0.8}M_{0.2}TaO_4$ (M = Mn, Fe, Co, Ni, and Cu). A comparison of the photocatalytic properties of the new photocatalysts with the TiO₂ photocatalyst is presented.

2. Experimental

Polycrystalline samples of $In_{0.8}M_{0.2}TaO_4$ (M = Mn, Fe, Co, Ni, and Cu) were synthesized by the solid-state reaction method. The pre-dried In_2O_3 , Ta_2O_5 , MnO_2 , Fe_2O_3 , CoO, NiO and CuO with purity of 99.99% were used as starting materials. The stoichiometric amounts of precursors were

[☆] First International Conference on Semiconductor Photochemistry (SP-1), Glasgow, UK, July 23–25, 2001.

^{*} Corresponding author. Tel.: +81-298-61-4410; fax: +81-298-61-6771. *E-mail address:* h.arakawa@aist.go.jp (H. Arakawa).

mixed and pressed into small columns. The columns were reacted in an aluminum crucible in air for 2 days at 1100 °C.

The chemical composition of the samples before and after photocatalytic reaction was determined by scanning electron microscope–X-ray energy dispersion spectrum (SEM–EDS) with accelerating voltage of 25 kV. The crystal structure of the samples was determined by powder X-ray diffraction method using Cu K α radiation ($\lambda = 1.54178$ Å). UV–Vis diffuse reflectance spectrum of the photocatalysts was measured by using an UV–Vis spectrometer (MPS-2000). The surface area was determined by BET measurement (Micromeritics, Shimadzu, Flow-Prep 060).

Photocatalytic reaction was carried out in a closed gas circulation system. The gases evolved were determined with TCD gas chromatograph, which was connected to a gas circulating line. In order to obtain high activity, it is essential to load a metal or metal oxide on the surface of photocatalyst. Because the addition of noble metals or metal oxides on a surface of semiconductor can change the photocatalytic properties by changing the semiconductor surface properties. The Pt was found to be the most effective for TiO₂ photocatalyst. We loaded Pt onto the catalyst surface by in situ photodeposition method in our experiments to obtain higher activity from H₂PtCl₆. Under light irradiation H₂PtCl₆ in solution is reduced to metallic state and deposited onto surface of catalyst powder, forming Pt/catalyst.

The photocatalytic reaction under UV irradiation was examined using an inner-irradiation type quartz cell with 400 W high-pressure Hg lamp and in an aqueous CH₃OH/H₂O solution (0.5 g powder catalyst, 50 ml CH₃OH, 300 ml H₂O and 0.1 wt.% Pt (Pt-loading instead of a H₂PtCl₆)). The photocatalytic reaction under visible light irradiation was examined using a Pyrex glass cell, 300 W Xe arc lamp and in an aqueous CH₃OH/H₂O solution (0.5 g powder catalyst, 50 ml CH₃OH, 200 ml H₂O and 0.1 wt.% Pt (Pt-loading instead of a H₂PtCl₆)). The 420 nm cut filter was placed onto the window face of the Pyrex glass cell. O₂ evolution reaction was performed in an aqueous silver nitrate solution (0.5 g powder catalyst, 0.5 mmol AgNO₃, 250 ml H₂O) under visible light irradiation ($\lambda > 420$ nm).

3. Results and discussion

The chemical composition of the photocatalysts before and after photocatalytic reaction was determined using characteristic X-rays of M L α (M = In, Mn, Fe, Co, Ni, and Cu) and Ta L α . The composition content was determined using the ZAF (Z: element number ("Z" number) correction; A: absorption correction; F: fluorescence correction) quantification method. The SEM–EDS analysis showed that the photocatalysts have a homogenous atomic distribution with no other additional elements. The chemical composition of these samples after reaction is also same with that of samples before reaction.

Fig. 1. X-ray powder diffraction patterns of photocatalysts before and after photocatalytic reaction.

The crystal structure of the photocatalysts before and after photocatalytic reactions was investigated using X-ray powder diffraction. The result is shown in Fig. 1. The data were collected at 295 K with a step scan procedure in the range of $2\theta = 5-100^{\circ}$. The step interval was 0.024° and scan speed, 1° min⁻¹. The powder X-ray diffraction analysis showed that all samples are the single phases. We can see that the Bragg peak distributions of the photocatalysts remain unchanged, indicating that the photocatalysts crystallize in the same crystal structure. Full-profile structure refinement of the collected powder diffraction data was performed using the Rietveld program REITAN [14]. Positional parameters and isotropic thermal parameters of the photocatalysts were refined. The result of refinement shows all the photocatalysts crystallize in the same wolframite structural type, monoclinic with space group P2/c.

The InTaO₄ photocatalyst has two kinds of octahedron in a unit cell, TaO₆ and InO₆ [12]. The volume of InO₆ octahedron in InTaO₄ is 13.601 Å³. However, the volume of TaO₆ is 10.648 Å³. This means that the volume of InO₆ octahedron was changed when In is doped by M (M = Mn, Fe, Co, Ni, and Cu) because the change of the M atomic radius, but crystal structure could not change. The change of the InO₆ volume leads to a slight change of the lattice parameters in the doped-InTaO₄ system. The details of the investigation on structure was published elsewhere [15]. We confirmed that the photocatalysts have changed neither the crystal structure nor the chemical composition after photocatalytic reaction.

Table 1 summarizes the H_2 evolution rate under UV and visible light irradiation, respectively, and catalyst

Table 1									
Rates of	f gas	evolution	and	physical	properties	of	the	photocatal	ysts

Photocatalyst ^a	Surface area (m ² /g)	Rate of evolution $(\mu \text{mol } h^{-1})$							
		UV irradi	iation ^b , CH ₃ OH/H ₂ O	Visible light irradiation ^c , $\lambda > 420 \text{ nm}$					
		H ₂	СО	CH ₃ OH/H ₂ O, H ₂	AgNO ₃ /H ₂ O, CO				
InTaO4 ^d	1.35	270	15	1.2	0.8				
In _{0.8} Mn _{0.2} TaO ₄	0.95	310	25	0.5	0.3				
In _{0.8} Fe _{0.2} TaO ₄	0.82	80	4	Non-doped	Non-doped				
In _{0.8} Co _{0.2} TaO ₄	0.93	370	35	0.6	0.6				
In _{0.8} Ni _{0.2} TaO ₄	0.97	470	45	3.1	1.1				
In _{0.8} Cu _{0.2} TaO ₄	0.81	100	5	Non-doped	Non-doped				
TiO ₂ (P25)	53.8	550	15	Non-doped	Non-doped				

^a Pt (0.1 wt.%) was loaded on the surface of powder catalyst.

^b 1.0 g powder catalyst under UV irradiation using 400 W high-pressure Hg lamp.

^c 0.5 g powder catalyst under visible light irradiation using 300 W Xe arc lamp.

^d The quantum yield at 402 nm was estimated to be 0.33% by using an interference filter (λ : 402 nm, half width: 15.3 nm).

characterization for these photocatalysts. Our catalysts are compared with TiO_2 (P25). It is noted that TiO_2 shows very high activity under UV irradiation, but the photocatalytic activity is not observed under visible light irradiation (see Table 1). This is consistent with the bandgap of TiO_2 . The bandgap of TiO₂ is 3.2 eV, which cannot respond to wavelength range of visible light. BET measurement showed that the surface areas of M-doped InTaO₄ are about 0.95 m^2/g as shown in Table 1. Since this is only about 2% of the surface area of the TiO₂ photocatalyst (see Table 1), it demonstrates the much higher efficiency of the new photocatalysts. It is evident that further increase in activity might be expected from increasing the surface area. Since an efficient photocatalytic reaction process occurs on the photocatalyst surface, the increase of the surface area for the photocatalysts might lead to the increase of their photocatalytic activity.

The photocatalytic activity significantly changed with the variation of doping atoms (M = Mn, Fe, Co, Ni, and Cu) in InTaO₄. Fig. 2 shows the H₂ evolution from CH₃OH/H₂O solution under UV irradiation. The formation rates of H₂ were estimated to be 0.31, 0.08, 0.37, 0.47 and $0.1 \text{ mmol } h^{-1}$ in the first 10 h for Mn, Fe, Co, Ni and Cu, respectively. The amount of evolved H₂ (mol) exceeded the amount of catalyst (about 1.38 mmol) at 24 h, indicating that the reaction occurs catalytically. The reaction stopped when the light was turned off in this experiment, showing the obvious light response. The result shows that the photocatalytic reaction is induced by the absorption of UV irradiation. The formation rate of H₂ increased on Mn, Co and Ni-doped InTaO₄, but decreased on the Cu and Fe-doped InTaO₄ photocatalysts than that of non-doped InTaO₄. The formation rate of H₂ on In_{0.8}Ni_{0.2}TaO₄ is about 180% than that of non-doped InTaO₄. The CO evolution was observed in this reaction from CH₃OH/H₂O solution as the oxidation product. The result is shown in Table 1. The CO evolution increases with illumination time, as does H₂ evolution. However, the rate of CO evolutions is much lower than that of H₂ evolution. The CO is probably from decomposition of the formaldehyde, which decomposes slower than

Fig. 2. Photocatalytic H_2 evolution on the $In_{0.8}M_{0.2}TaO_4~(M=Mn,$ Fe, Co, Ni, and Cu) compound from CH_3OH/H_2O solution under UV irradiation.

methanol dehydrogenates. On the other hand, the ratios of non-stationary and non-stoichiometry evolutions between H₂ and CO might result from generation of CO₂ and other evolutions. It is well known that when CH₃OH is added to a Pt/TiO₂ aqueous suspension, sustained H₂ production is observed under UV irradiation and the alcohol molecules are oxidized to final productions of CO₂, CO, CH₄, etc. [20]. The presence of oxygen vacancy defects strongly enhances such interaction due to electron back-donation from surface Ti³⁺ into π^* orbital of molecular CO [20]. The formation rate of CO changed with the variation of doping atoms, showing the same tendency as observed in H₂ evolution.

Under visible light irradiation ($\lambda > 420 \text{ nm}$) H₂ and O₂ were evolved using the Mn, Co and Ni-doped InTaO₄ photocatalysts from CH₃OH/H₂O and AgNO₃/H₂O solutions, respectively. The Cu and Fe-doped InTaO₄ photocatalysts cannot work at same conditions. Fig. 3 shows the H₂ evolution from CH₃OH/H₂O solution under visible light

Fig. 3. Photocatalytic H_2 evolution from CH₃OH/H₂O solution under visible light irradiation, $\lambda > 420$ nm.

irradiation using Mn, Co and Ni-doped InTaO₄ photocatalysts. The H₂ evolution increases with illumination time. The formation rate of H₂ on Ni-doped InTaO₄ is much higher than that of the non-doped InTaO₄ photocatalyst, as does H₂ evolution under UV irradiation. The CO evolution was observed in this reaction from CH₃OH/H₂O solution as the oxidation product. However, the formation rates of H₂ on Mn and Co-doped InTaO₄ are much lower than that of the non-doped InTaO₄ photocatalyst. The effect of visible light irradiation was investigated by dark experiment. The H₂ evolution stopped when light irradiation was terminated, showing the obvious visible light response. As a typical example, we examined the quantum yielded for non-doped InTaO₄ photocatalyst as shown in Table 1. The quantum yield at 402 nm was estimated to be 0.33% by using an interference filter (λ : 402 nm, half width: 15.3 nm).

 O_2 evolution reaction was performed in an aqueous silver nitrate solution under visible light irradiation ($\lambda > 420$ nm) and the following stoichiometric reaction takes place; $4Ag^+ + 2H_2O \rightarrow 4Ag^0 + O_2 + 4H^+$ [19]. Fig. 4 shows the O_2 evolution under visible light irradiation. This result shows that these photocatalysts have potential for O_2 evolution from aqueous solution. The rate of O_2 evolution increases with In being doped by Ni in the InTaO₄ photocatalyst. However, the rate of O_2 evolution decreases with In being doped by Mn and Co in the InTaO₄ photocatalyst, as does H₂ evolution under visible light irradiation. The rate of O_2 evolution on In_{0.8}Ni_{0.2}TaO₄ is 1.1 µmol h⁻¹. The activity increased by about 140% than that of non-doped InTaO₄ (see Table 1).

It is often observed that doping transition metals into photocatalysts such as TiO_2 decreases significantly the photocatalytic activities [16]. However, such a suppression effect by doping was not predominant in the Ni-doped InTaO₄ photocatalyst. The activity of Ni-doped InTaO₄ increased under both UV and visible light irradiation, respectively. Kudo

Fig. 4. Photocatalytic O₂ evolution from an aqueous silver nitrate solution under visible light irradiation, $\lambda > 420$ nm.

and Sekizawa [16] found also similar phenomenon [17]. The photocatalytic activity on Ni-doped ZnS was much higher than non-doped ZnS, while that on Cu-doped ZnS was lower [17]. Although the origin is unknown yet, the band structure of NiO has been investigated [18]. The band structure of oxides is generally defined by d-level and O 2p-level of the oxides. However, the band structure of NiO is assigned to Ni $3d^8$ and Ni $3d^9$ [18]. This means that the Ni 3d level in the Ni-doped InTaO₄ photocatalyst may form a new energy level in the band structure of InTaO₄. The light absorption properties of the InTaO₄ and In_{0.8}Ni_{0.2}TaO₄ photocatalysts were investigated. The onset of diffuse reflection spectra showed an obvious shift to high wavelength with In being doped by Ni in InTaO₄. The bandgaps of InTaO₄ and In_{0.8}Ni_{0.2}TaO₄ were estimated to be 2.6 and 2.4 eV from the diffuse reflection spectra. This means that the Ni-doped InTaO₄ photocatalyst can utilize a wider spectral region of light irradiation than non-doped InTaO₄.

The difference in the surface area of the photocatalysts can generally lead to the difference in photocatalytic activity since an efficient photocatalytic reaction process occurs on the photocatalyst surface. However, the surface area of the photocatalysts is similar as shown in Table 1. It is hard to consider that the differences in the surface area of the photocatalysts led to the differences in the photocatalytic activity. In order to make clear the origin of different photocatalytic activity between the different doping atoms, further band structure analysis seem to be necessary.

The wavelengths (λ) dependence of the photocatalytic activity under the light irradiation from full arc up to $\lambda =$ 550 nm was measured using different cut-off filters. The photocatalytic reaction was examined using a Pyrex glass cell, 300 W Xe arc lamp and in an aqueous CH₃OH/H₂O solution. These results are plotted in Fig. 5. The photocatalytic activity dependence of λ of light irradiation displays a normal photocatalyst behavior, with increasing λ of light

Fig. 5. The photocatalytic activity dependence of the wavelengths (λ) from full arc irradiation to $\lambda = 550$ nm; the amount of evolved H₂ at 24 h; using a Pyrex glass cell, 300 W Xe arc lamp and in an aqueous CH₃OH/H₂O solution (0.5 g powder catalyst, 50 ml CH₃OH, 200 ml H₂O and 0.1 wt.% Pt (Pt-loading instead of a H₂PtCl₆)).

irradiation, the photocatalytic activity decreases rapidly, since the number of incident photons was decreased when a cut-off filter was used. An obvious photocatalytic activity was observed when irradiated with a visible light ($\lambda >$ 420 nm), showing that both In_{0.8}Ni_{0.2}TaO₄ and InTaO₄ can respond to visible light irradiation. The photocatalytic activity was also obtained when a cut-off filter of $\lambda >$ 460 nm was employed. However, the activity disappeared when λ of light irradiation was larger than 500 nm. This means that light response occurred only at wavelengths shorter than 500 nm.

The process for photocatalysis of semiconductors is the direct absorption of photon by bandgap of the materials and generates electron-hole pairs in the semiconductor particles. The excitation of an electron from the valence band to the conduction band initiated by light absorption with energy equal to or greater than the bandgap of the semiconductor [4]. The diffuse reflectance spectrum of In_{0.8}Ni_{0.2}TaO₄ shows a visible light absorption band with the onset around 520 nm, while that of $InTaO_4$ is around 480 nm. This means that under visible light irradiation $(\lambda > 420 \text{ nm})$ the Ni-doped InTaO₄ photocatalyst can response to range of wavelength above 40 nm than that of non-doped InTaO₄. The difference between the visible light absorption band of In_{0.8}Ni_{0.2}TaO₄ and InTaO₄ might led to the difference of photocatalytic activity. This is consistent with the observation of photocatalytic activity.

4. Conclusion

A new series of M-doped $InTaO_4$ (M = Mn, Fe, Co, Ni and Cu) photocatalysts were synthesized by a solid-state reaction. We have presented the evidence for photocatalytic decomposition of an aqueous solution on these photocatalysts. Our experimental results show that the photocatalysts are sensitive to UV irradiation and that it is possible to obtain H₂ from an aqueous solution. Under visible light irradiation ($\lambda > 420$ nm) H₂ and O₂ were evolved using Mn, Co and Ni-doped and non-doped InTaO₄ photocatalyst from CH₃OH/H₂O and AgNO₃/H₂O solutions, respectively. The In_{0.8}Ni_{0.2}TaO₄ photocatalyst showed much higher activity than that of the non-doped InTaO₄ photocatalyst. Ni-doped InTaO₄ has been developed as a new visible light photocatalysts for H₂ and O₂ evolutions from aqueous solutions. The study of doping effects on structural and photocatalytic properties of InTaO₄ solid oxide photocatalyst will provide useful information on the mechanism of the photocatalysts and also on making the stable photocatalysts with high activity under visible light irradiation.

References

- [1] K. Honda, A. Fujishima, Nature 238 (1972) 37.
- [2] K. Tomoji, S. Tadayoshi, Nature 286 (1980) 474.
- [3] B.S. Geoffrey, E.M. Thomas, J. Phys. Chem. B 101 (1997) 2508.
- [4] K. Yeong, S. Samer, J.H. Munir, E.M. Thomas, J. Am. Chem. Soc. 113 (1991) 9561.
- [5] Y. Kim, S. Salim, M.J. Huq, T.E. Mallouk, J. Am. Chem. Soc. 113 (1991) 9561.
- [6] H.G. Kim, D.W. Hwang, J. Kim, Y.G. Kim, J. Lee, Chem. Commun. (1999) 1077.
- [7] J. Yoshimure, Y. Ebina, J. Kondo, K. Domen, J. Phys. Chem. 97 (1993) 1970.
- [8] Y. Inoue, Y. Asai, K. Sato, J. Chem. Soc., Faraday Trans. 90 (1994) 797.
- [9] A. Kudo, I. Mikami, Chem. Lett. 1027 (1998).
- [10] A. Kudo, K. Ueda, H. Kato, I. Mikami, Catal. Lett. 53 (1998) 229.
- [11] A. Kudo, K. Omiori, H. Kato, J. Am. Chem. Soc. 121 (1999) 11459.
- [12] Z. Zou, J. Ye, H. Arakawa, Chem. Phys. Lett. 332 (2000) 271.
- [13] Z. Zou, J. Ye, K. Oka, Y. Nishihara, Phys. Rev. Lett. 80 (1998) 1074.
- [14] F. Izumi, J. Crystallogr. Assoc. Jpn. 27 (1985) 23.
- [15] Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414 (2001) 625.
- [16] A. Kudo, M. Sekizawa, Chem. Comm. (2000) 1371.
- [17] A. Kudo, M. Sekizawa, Catal. Lett. 58 (1999) 241.
- [18] M.P. Dare-Edwards, J.B. Goodenough, A. Hamnett, N.D. Nicholson, J. Chem. Soc., Faraday Trans. II 77 (1981) 643.
- [19] H. Tada, A. Hattori, Y. Tokihisa, K. Imai, N. Tohee, S. Ito, J. Phys. Chem. B 104 (2000) 4585.
- [20] Z. Zou, J. Ye, R. Abe, H. Arakawa, Catal. Lett. 68 (2000) 235.